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Abstract—In this contribution will we conceptually derive two symbol-
channel estimators, the joint-ML and the ML, both having exponential
complexity. Pragmatically we derive three approximations with polyno-
mial complexity, one to the joint-ML: the pseudo-joint-ML; two to the
ML: the naive-ML and the linear-response-ML. We asses the resulting
average bit error rates empirically. Performance gains of several dBs are
observed from using the ML based approximations compared to the joint-
ML.
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I. INTRODUCTION

Traditional code division multiple access (CDMA) systems
are interference limited due to receivers designed using a code
matched filter or correlator followed by detection. However,
communication networks with high data rates, force the use of
short spreading codes. This will generate additional multiple
access interference (MAI) and in such situations interference
will limit the receiver performance. As shown by Verdú [1]
CDMA systems need not to be interference limited; when us-
ing an optimal multiuser detector (MUD) instead of the tra-
ditional receiver. These optimal receivers have exponential
complexity, so sub-optimal solutions to the multiuser detection
problem have been proposed [1], [2]. In traditional settings the
channel is estimated from pilot sequences, but blind estimation
of the channel has received focus, aiming to increase the spec-
tral efficiency. A blind linear detector that minimises the out-
put energy (MOE) is reported in [1], asymptotically the detec-
tor approaches the linear MMSE detector. In [3] the received
signal is projected into a subspace, where a linear decorrelating
or linear MMSE detector is formed, by only knowing the sig-
nature waveform from the user of interest. In [4] the likelihood
for the unknown channel is established by using the statistical
properties of the symbols and the signature waveform of the
user of interest. Besides taking the a priori statistics of the
symbols into account, the next natural step is to include the a
priori statistics of the fading. The last approach is employed in
[5], resulting in a Space Alternating Generalized EM (SAGE)
algorithm.

Our contribution is twofold, first we derive the joint-ML
symbol-channel estimator and an approximation to this, de-
noted pseudo-joint-ML detector. Secondly we derive the ML
detector for the channel i.e. marginalising out the symbols, and
two approximations to this: naive-ML and Linear-Response-

ML. The reason for proposing these new estimators, is to re-
veal the better performance achieved from using both the apri-
ori statistics of the symbols and the properties of the signa-
ture waveform in addition to a correct ML estimator of the
channel. The approximations applied are inspired from [6]
on Independent Component Analysis (ICA), being similar to
Blind MUD CDMA [7]. The derivation is based on a rela-
tively simple channel model:

�
Synchronous Users in Flat

Fading CDMA; but the methods also applies to more general
models. The paper is organised as follows: First we introduce
the channel model; then we review optimal symbol detection
according to both minimum probability of error and minimum
BER. Next we derive the joint-ML detector and its approxima-
tion: the pseudo-joint-ML. Lastly we derive the ML detector
and its approximations: the naive-ML and the linear-response-
ML. The performance of the detectors are assessed empirically
and discussed, followed by a conclusion.

II.
�

USERS CDMA IN FLAT FADING

Assuming a flat slow fading channel1, and BPSK modula-
tion the received base band CDMA signal can be modelled as

�������	� 
� � ��
��� ���� �������

��� � ��������� ��!#"%$&�'��� (1)

where � is time and

� � ����� is the ( ’th users signature waveform
with unit energy and � is the bit duration, � ��� �*),+ �.-�/0-01 is
user ( ’s � ’th bit in the block of duration 2 , � � is the ( ’th
users fading coefficient, and $&����� is a stationary white complex
Gaussian process with unit spectral density.

We process the signal ������� with the conventional matched
filter bank, each filter indexed by (�3 )4+ -�5 � 1 , followed by in-
tegration and sampling at each bit instant � to get the sufficient
statistics2 (for � , � , and "�6 )
7 �98�� � �;:#<= ���'��� � �98 �����>��� �@?A�&� ��� ���� � � ���

�CB ��� �98 !D$ �98�� � (2)E
We assume nothing about the distribution of the fading.F
We can understand this change to sufficient statistics as a projection onto a

subspace spanned by the signature waveforms.



where

B � � � 8 is the correlation between signal

� � �'��� and

� � 8 ����� ,
and $ �98'� � is a Gaussian random variable with both real and
imaginary part having zero mean and variance " 6 . Using the
above we have the joint likelihood for � , � , and " 6
�������� � / � /
	 / " 6�� � - ��� " 6 	  
��
����� ��������� -� " 6 ��� � 	 � � �"!#	%$ � ��� � 	 � � �"&(' (3)

where we have introduced matrix notation using ��� � � 8 � � �7 � 8 � � , � � � � 8 � � � ��� 8 � � , � � � ��� � 8 �*) � ( � ( 3 � � � , and �+	.� ��� � 8 �B ��� � 8 , � � � ! means transpose and complex conjugate, and �#� is
the usual matrix trace.

III. OPTIMAL DETECTORS

Given the noisy data and the channel one goal is to minimise
the expected BER, another to minimise the probability of error.
The expected BER is defined as,.-0/ � -�21 - � -2 � �#� � !%3�547698;: � <>= ? � @9ACB (4)

where the average 1 � 4�698;: � <>= ? � @ A B , as indicated, is taken with
respect to all bit realizations � and all noise realizations � .
The joint distribution ����� / � �� � / " 6 � is found by the likelihood
(3) multiplied by the a priori distribution of the transmitted
symbols ��� � �� �7� / � �� � / " 6 �&�D� � � �� � / � / " 6 � ��� � � (5)

where the dependence on 	 is omitted due to the fact that it is
known.

It can be shown, under some regularity conditions, that the

expected BER subject to the constraint that
��� � 3� � � 8 �

� ��� � - is

minimised by 3� �FE
GIH 1 �%47698 <>= : � ? � @9AJB (6)

for all given received data � , E
GIH working element wise.
The probability of error is defined as the probability that at

least one of the 2 � bits in the block are detected wrongly. We
can define � �+K �,-  � � � - �L) � 2 � �L��� � ! 3� � and so the
probability of error becomes���MK � - �� � / " 6 �	� - � 1 ) � 2 � � �#� � ! 3� � 47698;: � <>= ? � @ A B (7)

which is shown to be minimised for any received data � by3� �ONI�
G<QP�R $ �TS ��UWVYXZ[N � ��� � �� � / � / " 6 ��\ (8)

Equation (8) is the well known Maximum A Posterior (MAP)
solution, which reduces to maximum likelihood for uniform
prior distribution ��� � � .

The complexity per bit for both methods are ] �"^`_ � due to
the summation and exhaustive search, which is intractable due
to the exponential law in

�
.

IV. JOINT-ML SYMBOL-CHANNEL ESTIMATION

Constructing the joint-ML estimator, we divide the maximi-
sation into two parts; one for the symbols given the channel
and one for the channel given the symbols. Using �badcCG of the
joint likelihood (3) the symbol maximisation becomes3� �eN��TG<0P�R $ �
S �fU VYXZhg;H � � �i	 � � � ! 	 $ � ��� �i	 � � � � (9)

which is identical to (8) for known � . The update for the chan-
nel given the symbols is a convex optimisation problem, hence
we can take the partial derivative with respect to the channel �and "�6 , equate to zero and solvej gkN�G � � � � j gkN�G �7� 3� ! � !ml5$ � (10)

" 6 � ���.no	 $ � �p� ! ! � ! 	 ! � 3� 3� ! � � � 3� � !#q2 � (11)

where � lsrIt5u � � 8 � � � � 3� 3� ! � � 8 � � �M	.� � 8 � � ! 2wv ��� � 8 and
j gkN�G%� � �

of a matrix means the diagonal of that matrix arranged as a col-
umn vector. Since the symbols are discrete the optimisation in
equation (9) has to be carried out by enumeration3, i.e. ex-
haustive search, to surely obtain the global joint-ML solution.
We see that the evaluation of " 6rIt5u can be omitted if only the
symbol estimates are of interest. Asymptotically � 2yx{z �
the joint-ML detector will minimise the probability of error,
since the channel estimate will approach the actual channel and
equation (9) becomes equivalent to equation (8). This results
in the complexity being equivalent to the complexity of (8).

A. Pseudo-joint-ML Estimation

Since the complexity of the joint-ML estimator is exponen-
tial in

�
we derive a local search algorithm for the symbols.

Taking the partial derivative of �ba;cIG of the joint likelihood
(3) with respect to � , subject to the constraint

 � � � � 8 � �  � - ,
equating to zero, and solving yields

� �FE
GIH|� / � � ! �7� � �+	 � v � � � � � (12)

where E
GIH acts on each element. Taking partial derivatives with
respect to � and "�6 , equating to zero and solving yields the
equations (10) and (11) for � and " 6 .

The equations holds in minima since the gradient of the joint
likelihood equals zero. Solving the equations can be carried
out in many ways leading to e.g. hard decision successive in-
terference cancellation [2] (HSIC) or hard decision parallel in-
terference cancellation (HPIC). Updating equation (12) suffers
from local minima and hence depends on the initial values.
Thus, it does not in general achieve the joint-ML solution, this
is the reason for the name pseudo-joint-ML. In this context
we can see the update of � and " 6 as channel estimation us-
ing hard decision feedback from equation (12). We can see the
pseudo-joint-ML as trying to minimise the probability of error.}

Equation (10) can eventually be substituted back into (9) before the enu-
meration.



V. ML CHANNEL ESTIMATOR

Since the joint likelihood is the likelihood for the symbols
jointly with the channel, we now derive the correct likelihood
for the channel alone.

In ML settings it is common to distinguish between hidden
variables (incomplete data), visible variables (complete data
besides the incomplete data) and parameters4. The likelihood
of the channel parameters � and " 6 is found as the joint like-
lihood times the prior of the hidden variables � marginalized
with respect to the hidden variables � . The likelihood for �and " 6 then becomes

� �7� �� � /T	 / " 6 �&� �<0P�R $ � � ��U VYX
���7�F�� � / � /T	 / "�6%�� 
 � (13)

where the prior is � � � �	� � $ 
 � . Taking partial derivatives of�badcCG of the likelihood (13) with respect to � , " 6 respectively,
equating to zero and solving we getj g;NIG � � �	� j gkN�G ��� 1 �%4 ! � lh$ � (14)

" 6 � �#�>�M	 $ � �p� ! ! � ! 	 ! � 1 �s� ! 4 � � � 1 �54 � ! �2 � (15)

with � l � � 8 � � � � 1 �%� ! 4 � � 8 � � �M	 � v � � 8 � � ! 2wv � 8 � � \ (16)

where we define 1 � 4 � 1 � 4�698 <>= : � ? � � � @ B i.e. the posterior ex-
pectation. We see that the ML estimator, contrary to pseudo-
joint-ML estimator, needs knowledge of the noise variance.
The ML estimator of � and " 6 is a more efficient estimator
than the joint-ML estimator. This can be explained by the
fact that the ML estimate of the channel depends on 1 �%4 and1 �%� ! 4 which fluctuates less than the � that maximises the
joint likelihood and �s� ! used in the joint-ML channel esti-
mate (10). Since we have to calculate 1 �54 , we get the optimal
BER symbol estimator, equation (6): 3� � E
GIH 1 �54 , as a side
product. Asymptotically the channel estimate approaches the
actual channel, implying the symbol estimate asymptotically
minimises the expected BER. Unfortunately this also implies
the same complexity as ��� � .
A. Approximate ML Channel Estimator

Because of the high complexity to obtain 1 �54 and 1 �%� ! 4 ,
the aim now is to approximate these in a less costly way than
doing the exact likelihood estimates.

With �badcCG likelihood defined by

�ba;cIGY� �7� �� � /T	 / " 6 �&� �badcCG �<0P�R $ � � ��UWVYX
����� �� � / � /
	 / "�6 �� 
 � (17)

�
This is contrary to the Bayesian approach where we only have hidden vari-

ables and visible variables, the first including the parameters.

we now propose an arbitrary distribution � � � � which has sup-
port where the posterior distribution � � � �� � / � /
	 / " 6 � has
support. Using Jensens inequality we obtain� a;cIGY� �7�F�� � /
	 / " 6 ��� � �<0P�R $ � � ��U VYX� � � � adcCG

� �7� �� � / � /
	 / "�6 �� � � � � 
 �
(18)

Equality is obtained if � � � � � � � � �� � / � /T	 / "�6 � which can
be proved by Bayes rule. Making this choice will obviously
have the same complexity as calculating the likelihood exactly.
Now, the idea is to come up with a distribution � � � � that makes
the calculation of the right side of (18) tractable and makes the
bound tight. The resulting distribution being an approximation
to the posterior distribution of � . If � � � � is parameterised we
can use (18) as a cost function to minimise with respect to the
parameters under the constraint that � � � � sums to one.

Here we take

� � � �	� ��� ��

��  � � �

� � � � � � (19)

i.e. to factorise completely, where

� � � � � � � �	� � - !	� �
�

� '�
��������A�� � - ��� � �� '�
�������A�� / (20)

is chosen as a Bernoulli distribution with parameter
����� ���6 .

This parameterisation is chosen to make 1 � � � 4! ��� 8 < ��� B �"� �
�
.

This approximation is in the physics literature [8] referred to
as the naive approximation.

With the above � � � � we write out the right side of equation
(18) and take the partial derivative with respect to the � � � ’s
under the constraint #$� � � � � - and equating to zero. This
yields the equation for the matrix �&% � � � �'� � �

% �"(TNIH*) � -" 6 / � � � ! � � � ! �+	 � v � � % � & (21)

We see that (21) only differs from pseudo-joint-ML updates in
(12) by (TNIH*) �,+@9A � instead of E
GIH � � � .

To update � and " 6 we use the ML estimate (14) and
(15) described in the previous section with the approximation
that 1 �%4.- 1 �%4! 8 <mB ��% and 1 �%� ! 4/- 1 �s� ! 4! 8 <mB �1 �54� 8 <�B 1 � ! 4� 8 <�B �0%1% ! , where we have used that � � � �
factorises.

We see that the algorithm obtained is very similar to that of
the pseudo-joint-ML, except we get soft decisions instead of
hard decisions. The way we solve equation (21) gives either
soft SIC (SSIC) or soft PIC (SPIC). If we use successive up-
dates i.e. update one % � � at a time we can prove that the bound
(18) is made tighter in each update of % � � . Since the updates
of � and "�6 are convex given % this also tightens the bound.
The result being a Generalized EM algorithm5.2

For this to be true both steps have to do hill-climbing towards the true
likelihood, but not necessarily going to a minimum in each step. The proof is
left out due to limited space.



B. Linear Response Correction to Channel Estimate

The ML estimate in (14) and (15) requires knowledge of
both 1 �%4 and 1 �s� ! 4 . In the previous section these were ap-
proximated by taking averages with respect to � � � � . This gave
a naive approximation to 1 �%� ! 4 due to the fact that the cor-
relations are neglected when � � � � is chosen to factorise. A
correction to the estimate of 1 �%� ! 4 can be found by using the
following identity for the second cumulant

� � � � 8 � 8 � 1 � � � � !�98 � 8 4 � 1 � � � 4 1 � !�98 � 8 4� " 6 � 1 � � � 4� / � �7� ! � �
� 8 ��8 (22)

Proof:" 6 � 1 � � � 4� / � �7� ! � �
� 8 � 8 � " 6 � # � �

� ��� � �� � / � /
	 / "�6 �� / � ��� ! � �
� 8 � 8� " 6 � �6 8k: = ? � � � @ A B # � � � ��� � / �F�� � /
	 / "�6 �� / � �7� ! � �

� 8 �98
� # � � � � �98 � 8 ��� � / � �� � /T	 / "�6 ������  � /
	 / " 6 �� # � � � � � � / � �� � /T	 / " 6 � # � ��8

� 8 � � � / � �� � /T	 / " 6 ����7�  � /
	 / " 6 � 6� 1 � � � � !� 8 � 8 4 � 1 � � � 4 1 � !� 8 � 8 4 �
But since we don’t want to calculate 1 � � � 4 , we employ the
following approximation� 1 � � � 4�6 8 < = : � ? � � � @ B� / � ��� ! � �

� 8 � 8 -
� % � �� / � �7� ! � �

� 8 � 8 (23)

which is called the linear response correction [8].
We now do the partial derivative on

% � � � ( N�H*)�� -" 6 + / � � � � ! � � �
� �

� ��
�  � / � ��� � ��� ���A�+	 � v � ��� � ��� % �

� ��1'� (24)

from (21) to yield the approximation (23) for the second cu-
mulant

� � � � 8 � 8 - " 6 � % � �� / � ��� ! � �
� 8 � 8� ) �'� ��� 3 ���@- �	% 6� � 8 � + ) � ( � ( 3 �� -" 6 �� � �� / � � � � ������ �+	;� v � ��� � ��� ��� �

� 8 �98 � 8 17\
(25)

Isolating � � � ��8 � 8 we get

� � � � 8 � 8 �F) �'� �>� 3 � � �
	 $ �� 8 ! -" 6 � ! �M	 � v � � � $ � & ��� 8 (26)

where the diagonal matrix 	
� 8 is defined as �
	 � 8 � �0� � - �% 6� � 8 .

Now we can estimate� 1 �%� ! 4�698 < = : � ? � � � @#B � ��� 8 - 
� � �� � �
� � 8 � ! ��%1% ! � ��� 8 (27)

which can be used directly in (14) and (15) to improve the
estimate of � and " 6 .
C. Complexity of the Approximate Algorithms

The updates in equation (12) and (21) have the same com-
plexity of order ] ��� � per bit. The updates for � in equation
(14) has a complexity of ] ��� � for 2� � and ] � _��� � per bit
for 2�� �

. The linear response corrected estimate requires] �
��� � due to the fact that at each bit instant we have to invert
a
��� �

matrix.

VI. SIMULATIONS AND DISCUSSION

Data are generated according to the distribution (3), 	 being
the correlations of the signature waveforms, here calculated on
the basis of random PN-sequences, with 2�� chips. The chan-
nel coeffiecients � are all constructed to have unit length and
random phase, the block length is fixed to 2 � -���� . For each
block simulated new random sequences are generated. We de-
fine the system load as the ratio of the number of users to the
spreading gain � � �
�� .

We use the three proposed detectors as follows: We first
make an initial guess on � by using  preamble bits, then
we use this to get an initial guess on � � E
GIH � �+	 � � $ � � �or � � ( N�H*) � �+	 � � $ � � � corresponding to either joint-ML
or ML algorithms. We calculate the initial noise variance by
equation (11). Then we process two stages of each algorithm,
with successive updates in decending power order.

In figure (1) we present Monte Carlo studies of the algo-
rithms. Every point is simulated until -!�"� bit errors were
reached, giving an accuracy on BER of -���# 6.

In the left plot of figure (1) we have simulated the Bit Er-
ror Rate of user - where SNR � is the corresponding signal
to noise ratio for

� � � � users and the number of chips2$� � �  . The conventional detector fails to estimate the
transmitted bits due to the high SIR produced by the non-
orthogonal signature waveforms. A rutine calculation shows
that %2v 	 � � �& X

� ' A�( A� � , where we can use
 B � �  - �) 
*�

on average when using random PN-sequences. This implies%2v 	 � � 
*�� $ � which for the given case yields a bit error rate
of l �,+ %Qv 	 � � �-� \ -�. in the absence of noise. At a BER of/*0 � -!� $21 , linear-response-ML detector gains - ? � compared
to naive-ML detector and

� ? � compared to pseudo-joint-ML
detector. The loss down to the single user bound is around 3
dB.4

Strictly this is an optimistic error bar, since the bit errors inside a block
probably are correlated due to the estimate of 5 and 6 F but at the desired
BER= 798!: } we mainly observed single errors.
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Fig. 1. Left plot: BER for user 1 for the three proposed methods, the single user bound, conventional, and the initial detector, at ������8 and �������
	 . Right
plot: SNR of user 1 to obtain a BER � 798 : } for different number of users at a constant load ���


� � � 7�� �!: E . Conventional detector: solid-dot, Initial

detector: solid with round markers, pseudo-joint-ML: dotted, naive-ML: solid, linear-response-ML: dashed, and Single user bound: dash-dot.

The plot to the right shows the performance for a fixed sys-
tem load � � -C\ � $ � i.e. fixed spectral efficiency and fixed
BER

/*0 � -!� $ 1 . At first sight it seems a bit contra intu-
itive that the performance is increased for increasing

�
, the

SIR - � $ � so we could expect the performance to be equal for
all
�

. But in the derivation of the algorithms we have implic-
itly assumed that the MAI can be approximated by a gaussian
variable, i.e. using the Central Limit theorem. The conclusion
is that MAI looks more and more gaussian for increasing num-
ber of users

�
and hence performance is increased for fixed

load � . As expected, due to the soft tentative decission, naive-
ML perform better than pseudo-joint-ML for all

�
, but it is

hard to quantize whether this performance gain is due to the
better channel estimate or the soft vs. hard tentative decission.
For the linear-response-ML vs. the naive-ML we see that we
gain up to 2 dB, this because of the improved channel estimate,
since the tentative decisions in both cases are soft. In future
work will we examine the dependence on 2 and the near-far
resistance.

VII. CONCLUSION

In this contribution three approximative detectors for joint
symbol-channel estimation are derived. One approximating
the joint-ML detector, and two approximating the ML detec-
tor for the channel. The empirical results shows a bennefit
of using approximations to ML for the channel instead of the
approximating joint-ML detector. Furthermore can it be con-
cluded that the cross-correlations between individual bits are

important for the ML channel estimate.
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