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ABSTRACT

We extend MacKays Bayesian approach to neural classifiers to in-
clude an outlier detector mechanism. We show that the outlier
detector can locate misclassified samples.

1. INTRODUCTION

Multi-layer perceptron networks posses powerful approximation
capabilities and when used for classification they can adapt to ar-
bitrarily complex posterior probability functions. Such extreme
flexibility calls for careful control of overfit. In previous work we
have designed resampling based tools for control of overfit and
outlier detection. Overfit control is aimed at regularization, typi-
cally using weight decay, i.e., controlling the roughness of decision
surfaces so that they not get too rough in the face of noise in finite
samples. Outlier detection, on the other hand, is aimed at mod-
eling and controling random label noise that can lead to wrong
decision surface topologies by creating isolated “islands” of the
wrong class. In this work we develop overfit and outlier control in
a Bayesian (MLII) setting. The potential advances of the Bayesian
approach are

� For limited data sets, as typically appear in medical appli-
cations, resampling based approaches are problematic, be-
cause of the poor statistics of outliers. If there are only a
few outliers in the total sample, results will be highly de-
pendent on the distribution of the outliers among the train-
ing and validation sets.

� The Bayesian approach requires less computation because
it avoids multiple training sessions inherent to cross-valida-
tion procedures.

� The Bayesian approach avoids the open issue of resampling
split ratio.

2. OUTLIER PROBABILITY IN CLASSIFICATION

We aim at modeling the posterior probability functions for multi-
classification given by p(Ckjx), k = 1; 2; : : : ; c, where x is the in-
put feature vector with dimension I , Ck is the corresponding class
label and c is the number of classes.

�This work is supported by the Danish Research Councils through the
project Signal and Image Processing for Telemedicine (SITE).

Outliers are defined as an input pattern having the correspond-
ing target class label erroneously “flipped” to another class. An
example of this could be in skin lesion classification, where sam-
ples are labeled by histological examination. If the sample for
some reason is erroneously registered, the label can have a random
relation to the input pattern. Hence, we defined a probability " of
being assigned with random target label. The outlier probability
" = [0; 1] is assumed to be independent of both “true” class label
and input pattern value.

The posterior probability distribution has been previously for-
mulated [1]

p(Cljx) = p0(Cljx)(1� ") +
"

c� 1

cX
k=1;k 6=l

p0(Ckjx) (1)

where p0(Cljx) is the posterior probability with zero outlier prob-
ability. The first term in equation 1 is the probability that the input
pattern x is not an outlier, while the second term is the outlier
contribution coming from classes other than Cl. Defining a scaled
outlier probability � = "=(c� 1), equation 1 can be rewritten as

p(Cljx) = p0(Cljx)(1� �c) + � (2)

where � = [0; 1=(c� 1)].

3. NETWORK ARCHITECTURE AND INFERENCE

In following we will represent probabilities with a two-layer feed-
forward neural network with I inputs given by

hj(x) = tanh

 
IX

i=1

wjixi + wj0

!
(3)

where wj0 is the bias and hj(x) is the output of the jth sigmoidal
activation function of the hidden layer. Network output k of the
output layer is given by

yk(x) =
HX
j=1

wkjhj(x) +wk0 (4)

where H is the number of units in the hidden layer. To be able
to interpret the outputs as estimates of the posterior probabilities
p̂(Ckjx) we use a modified version of SoftMax [2]. The standard
SoftMax [3] has dependency between the weights as the outputs



always sum to one, which causes problems in the evaluation of
the inverse Hessian. The modified SoftMax solves the problem by
using only c� 1 outputs and is given by

p̂0(Ckjx) =
exp(yk(x))

1 +
Pc�1

k0=1 yk0(x)
; k = 1; 2; : : : ; c� 1 (5)

and the probability for the last class is easily evaluated with

p̂0(Ccjx) = 1�
c�1X
k=1

p̂0(Ckjx): (6)

An estimate of the outlier modified posterior probability is given
by p̂(Cljx) = p̂0(Cljx)(1� �c) + � from equation 2.

The data set for the supervised training of the model is given
by the input-output pairs D = fx(n); t(n)g, n = 1; 2; : : : ; N

where t(n) is the one-of-c coded target value vector given by

t
(n)
k =

�
1 if x(n) 2 Ck
0 otherwise

(7)

where k = 1; 2; : : : ; c. To simplify notation we define the network
weight vector as w, holding all weights.

To estimate the weights we invoke the approach proposed by
David MacKay [4, 5]. The posterior probability of the parameters
w can be written as

p(wjD; �; �) =
p(Djw; �)p(wj�)

p(Dj�; �)
(8)

where p(Djw; �) is the likelihood, p(wj�) is the prior, p(Dj�; �)
is the evidence. The � and � are hyperparameters, i.e., regular-
ization parameter and scaled outlier probability respectively, both
assumed to be known when inferring the weights. For a classi-
fication problem with multiple classes the choice of likelihood is
p(Djw; �) = exp[�ED(w; �)] where

ED(w; �) = �
NX
n=1

cX
k=1

t
(n)
k ln(p̂(Ckjx)) (9)

is the cross-entropy error function [6]. The prior is given by

p(wj�) =
exp[��EW (w)]

ZW (�)
(10)

where ZW (�) =
R
exp��EW (w)dw is a normalization factor

and EW (w) is a regularization function, given by

EW (w) =
1

2

WX
i=1

w2
i (11)

where W is the number of weights in the network. This is a zero
mean Gaussian prior, better known as weight decay.

The optimization of the weights is done by minimizing a cost
function, S(w) / � ln p(wjD; �; �), given by

S(w) = ED(w) + �EW (w): (12)

where weight independent terms have been omitted. The weights
are optimized using a Gauss-Newton scheme [7] given by

w
new = w

old � �A�1(wold)g(wold) (13)

where g(w) = @S(w)=@w is the gradient of the cost function
with respect to the weights, A(w) is the Gauss-Newton approxi-
mation of the Hessian matrix and � is the step size, determined by
line search. See [1] for details.

3.1. Adapting the hyperparameters

The posterior distribution for the hyperparameters is given by

p(�; �jD) =
p(Dj�; �)p(�; �)

p(D)
: (14)

We assign a uniform prior over hyperparameters
p(�; �) and thus make the so-called evidence approximation us-
ing the evidence p(Dj�; �) to evaluate p(�; �jD). For details on
this approximation see [8]. The evidence can be evaluated with the
Laplace approximation

p(Dj�; �) =

Z
p(Djw; �)p(wj�)dw (15)

=
1

ZW (�)

Z
exp[�S(w)]dw (16)

�
e�S(wMP)(2�)W=2jAj�1=2

ZW (�)
(17)

where wMP is maximizes the product p(Djw; �)p(wj�)dw.

Finding �̂, an estimate of �, is done by minimizing

C(�) / � ln p(Dj�; �) (18)

= S(wMP) +
1

2
jAj (19)

where terms independent of � have been omitted. We suggest us-
ing Brent’s method [9], approximating C(�) as a quadratic func-
tion to find �̂. This is possible as C(�) is a smooth function and
we have an upper and lower bound on � setting the range for the
search of �̂. As Brent’s method does not use gradient information
we avoid evaluating @S(w)=@� which has the unpleasant property
of zero denominator when � = 0.

The � is computed as in [4], by maximizing ln p(Dj�; �),
evaluating @ ln p(Dj�; �)=@� which gives the following update
formula

�new =



2EW (wMP)
(20)

where 
 = W � �TraceA�1 is the effective number of weights
in the network.

A practical approach to adapting the regularization parameter
would be to train the weights and update the � and � when the
weights have converged. This is repeated cyclically until the regu-
larization parameters have converged.

3.2. Outlier detection

Having estimated the network from the data, it is possible to eval-
uate the outlier probability labeled examples

poutlier =
�(1� p0(Cljx))

p0(Cljx)(1� �c) + �
(21)

where Cl is the target label class, see [1] for details. This leads
to the estimate p̂outlier = �̂(1 � p̂0(Cljx))=p̂(Cljx). To make
decisions we threshold the value of p̂outlier at 0.5.



4. EVALUATION

The performance of the outlier model is first tested on a toy prob-
lem. The toy problem has c = 3 classes defined in a 2D input
space. The class conditional probabilities are p(Ckjx) = N (�k; I)
where �1 = [0; 2], �2 = [�1:5;�1], �3 = [1:5;�1] and I is the
identity matrix. The prior class probabilities are p(Ck) = 1=3. The
number of training examples is N = 300 and also 3000 indepen-
dent data points for testing are generated. Outliers are introduced
to the training data by flipping the labels at random with flip rate
r. In Figure 1 we show results averaged over 100 independently
generated data sets. The network is initialize with H = 3 hidden
units. The outlier model presents considerably better performance
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Fig. 1. The figure shows the average cross-entropy error on test
data using the toy data with different flipping rates. The cross-
entropy error for the outlier model was evaluated with outlier prob-
ability �̂ = 0 which gives the same error function. The outlier
model has significantly less cross-entropy error when the data is
corrupted when compared to a conventional model.

for large outlier rates.
In Figures 2 and 3 we take a closer look at the outlier assign-

ment for the toy problem. Some of the flipped labels belong to
patterns near decision boundaries (see Figure 3), where we find
low posterior probabilities for the target label class. These pat-
terns are accounted for by the noise model of the underlying deci-
sion problem (overlapping classes), hence, should not be detected
as outliers. With this in mind we expect the estimated outlier rate
to be less than the flip rate. This is confirmed in Figure 4.

5. SKIN LESION CLASSIFICATION

Malignant Melanoma (MM) is a lethal skin cancer developing from
pigmented skin lesions. The cancer is most lethal if it enters the
bloodstream, hence it is important to diagnose MM at an early
stage. Diagnosing MM is not trivial, as many common skin lesions
resemble MM visually. Two studies show that trained dermatolo-
gists diagnoses clinically 63% [10] and 75% [11] of cancerous skin
lesions correctly. A study at Karolinske Hospital, Stockholm, Swe-
den shows that dermatologists with less than one year experience
diagnose only 31% correctly.

New incidences of MM in Denmark, e.g., has increased 5- to
6-fold from 1942 to 1982 while the mortality rate has been dou-
bled from 1955 to 1982 [12]. Currently, approximately 800 cases
of malignant melanoma are reported in Denmark every year. In
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Fig. 2. The figure shows one of the generated data sets with data
points flipped at a rate of r = 0:1.
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Fig. 3. The contour shows the maximum posterior probability for
all the classes, estimated with an outlier model using the data in
figure 2. The outlier model easily detects the flipped data points
that are not too close to the decision boundary. Flipped data points
near the boundary are confused with noisy data points and cannot
detected as outliers.

Germany 9000 � 10000 new cases are expected every year with
an annual increase of 5� 10% [13].

Taking a biopsy of every suspicious lesion and using a histo-
logical analysis is not acceptable for patients with multiple lesions
and is also costly and time consuming. Taking biopsies in sensitive
places like the face could produce scars. Automatic classification
of skin cancer using machine learning techniques could help both
dermatologist and non-dermatologist to diagnose an early stage of
MM. A non-invasive method like Raman spectroscopy can probe
the tissue biochemistry in the lesion and discriminate between le-
sion types. Raman spectra are obtained by pointing a laser beam
in vitro or in vivo. The laser can excite molecular vibrations caus-
ing reflected beam with a spectrum of frequencies. This is called
the Raman effect. The frequency shifts are dependent on the type
of molecules in the sample and the Raman spectra holds therefore
information about the local biochemistry.

The outlier model was applied to classification of skin lesions.
The data set consists of c = 5 different classes of skin lesions
where each of the N = 177 lesions is represented with a Ra-
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Fig. 4. The figure shows the outlier probability "̂ of the outlier
model as a function of the flipping rate of the toy data. When
the data has no outliers the outlier model estimates a low outlier
probability, but in general the outlier probability is estimated lower
than the flipping rate.

man spectrum of 1711 points. The input space is reduced with
principal components analysis where the I = 25 largest principal
components are used as network inputs. The network is initial-
ized with H = 20 hidden units. In Figure 5 we show the Raman
spectrum for an example detected as an outlier. The class label
is pigmented nevi, however, it seems likely that this is an error
since the the spectrum is more similar to the normal class.

6. CONCLUSION

We have extended the Bayesian MLII approach for neural network
classification to incorporate an outlier model with an estimate of
the outlier probability. The estimate of the outlier rate in a toy
problem was shown to be conservative. In the context of skin le-
sion classification, the new scheme seems promising; a detected
outlier seems indeed to be a misclassified example.
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