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ABSTRACT

In certain applications of independent component analysis (ICA)
it any of interest to test hypotheses concerning the number of com-
ponents or simply to test whether a given number of components
is significant relative to a “white noise” null hypothesis. We es-
timate probabilities of such competing hypotheses for ICA based
on dynamic decorrelation. The probabilities are evaluated in the
so-called Bayesian information criterion approximation, however,
they are able to detect the content of dynamic components as effi-
cient as an unbiased test set estimator.
Keywords: Blind Source Separation (BSS), Dynamic Components,
Independent Component Analysis (ICA), BIC detection

1. INTRODUCTION

Blind separation of linear mixtures is an extremely active research
area [1, 2]. Despite the obvious relevance in many applications, re-
markably little effort has been devoted to blind signal detection. In
medical applications, e.g., there is often an interest in quantifying
the statistical significance of independent component representa-
tions. In this contribution we develop a scheme for testing compet-
ing hypotheses about the content of independent dynamic compo-
nents in a multi-channel signal. We use an approximate Bayesian
framework for computing relative probabilities of the relevant hy-
potheses, hence, obtain control of both type I and type II errors.

Independent component analysis (ICA) is typically based on
non-Gaussianity [3, 4] or temporal correlations [5, 6]. Attias and
Schreiner proposed a very rich ICA framework based on higher
order statistics and decorrelation [7, 8], allowing for completely
general and learnable source distributions, however at the price of
significant computation [9].

Molgedey and Schuster proposed an approach based on dy-
namic decorrelation which can be used if the independent source
signals have different autocorrelation functions [5, 10, 11]. The
main advantage of this approach is that the solution is simple and
constructive, and can be implemented in a fashion that requires
minimal user intervention (parameter tuning). In [11] we applied
the Molgedey-Schuster algorithm to image mixtures and proposed
a symmetrized version of the algorithm that relieves a problem of
the original approach, namely that it occasionally produces com-
plex mixing coefficients and source signals.
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2. PROBABILISTIC MODELING

We start by reviewing Bayesian estimation of probabilities over
sets of hypotheses. Let such a set of hypotheses (models) be in-
dexed bym = 0; :::;M (we usem = 0 to signify a null-hypothesis,
corresponding to no non-trivial independent components in the
data). The probability of a specific model given the observed data
X is denoted by P (mjX), using Bayes’ relation this can be writ-
ten as,

P (mjX) =
P (Xjm)P (m)

P (X)
: (1)

The prior probability P (m) reflects our prior beliefs in the specific
model in relation to the other models in the set, if no specific belief
is relevant we will use a uniform distribution over the set.

A model will typically be defined in terms of a set of pa-
rameters � so that we have a so-called generative model density
P (Xj�;m), this density is often given by the observation model.
We then have the relation

P (Xjm) =

Z
d�P (X; �jm) =

Z
d�P (Xj�;m)P (�jm): (2)

The P (�jm) distribution carries possible prior beliefs on the level
of parameters, often we will assume so-called vague priors that
have no or little influence on the above integral, except making it
finite in the case X is empty (i.e., P (�jm) is normalizable).

The integral in equation (2) is often too complicated to be eval-
uated analytically. Various approximation schemes have been sug-
gested, here we will use the Bayesian Information Criterion (BIC)
approximation [12]. This approximates the integral by a Gaussian
in the vicinity of the parameters that maximize the integrant (the
so-called maximum posterior parameters ��). With this approxi-
mation the integral becomes

P (Xjm) � P (Xj��;m)P (��;m)T�d=2; (3)

where d is the dimension of the parameter vector and T is the
number of training cases. Observe that high-dimensional models
(large d) are exponentially penalized, hence, can only be accepted
if they provide highly likely descriptions of data.



3. DYNAMIC COMPONENT LIKELIHOOD FUNCTION

Let the multi-channel signal be represented as a data matrix X
with a time row index,

X = (X)l;t =

KX
k=1

Al;kSl;t = A � S; (4)

where l = 1; :::; L represent measurements (e.g., microphones)
t = 1; :::; T , are the sampling time points, and A is the L � K
real mixing matrix. The dynamic components S are assumed to be
given by unknown independent, unit variance, white noise signals,
Uk;t, filtered by the unknown, and source specific filters hk,

Sk;t =

NkX
�=0

hk;�Uk;t�� (5)

This leads to the following model

P (XjA;K) =

Z
dS�(X �AS)P (S): (6)

The source distribution is given by,

P (S) =
Y
k

1p
j2��kj

exp

0
@�1

2

X
t;t0

Sk;t(�
�1

k )t;t0Sk;t0

1
A ; (7)

where the source covariance matrix is given by

�k;t;t0 =
X
�

hk;�hk;t0�t+� : (8)

These matrices are Toeplitz under the model assumptions. Evalu-
ating the integral in equation (6) provides the expression

P (XjA;m) =
Y
k

1p
j2��kj

�
1

kAk

�T

exp

0
@�1

2

X
t;t0

bSk;t(��1k )t;t0 bSk;t0
1
A : (9)

with kAk being the absolute value of the determinant of A, while
we use the notation bSk;t(X), for the sources estimated from A;XbSk;t =Pl(A

�1)k;lXl;t.

4. MOLGEDEY SCHUSTER SEPARATION

Let X� be the time shifted data matrix. The delayed correlation
approach is based on solving the simultaneous eigenvalue problem
for the correlation matricesX�X

> and XX>, see [11] for a more
detailed derivation. This is implemented by solving the eigenvalue
problem for the quotient matrix Q � X�X

>
�
XX>

��1
. From

equation (4) we have

XX> = ASS>A>; X�X
> = AS�S

>A> (10)

If the sources furthermore are independent, we obtain in the limit
limN!1N�1SS> = C(0), the diagonal source crosscorrela-
tion matrix at lag zero. Similarly, limN!1N�1S�S

> = C(�)

produces the diagonal crosscorrelation matrix at lag � . Hence, to
zero’th order in 1=N ,

X�X
>

�
XX>

��1
� AC(�)A>(A>)�1C(0)�1A�1(11)

= AC(�)C(0)�1A�1

with C(� )C(0)�1 being a diagonal matrix. If we solve the eigen-
value problem for the quotient matrixQ � X�X

>
�
XX>

��1
we

have a direct scheme for estimating A; S. Let

Q� = ��; (12)

and identify � = A and � = C(� )C(0)�1 up to scaling factors.
It is straight forward to generalize the constructive scheme to

the under-determined case (more microphones L than sources K).
We use a subspace projection scheme based on the SVD of the data
matrices. First we note XX> � X�X

>

� , hence,

X = UDV >; X� = UDV >� : (13)

In other words, the correlation matrices become,

XX> = UDV >V D>U>; X�X
> = UDV >� V D>U>:

(14)

The appropriate subspace (Moore-Penrose) inversion of XX>, is
then�

XX>
��1

= UD�1(V >V )�1D�1U> = UD�2U>; (15)

and we find that the quotient matrix for the eigenvalue problem
becomes1,

X�X
>

�
XX>

��1
= UDV >� V DU>UD�2U> (16)

= UDV�V
>D�1U>: (17)

We have an option here for regularization by reducing the number
of sources, i.e., by reducing the dimension of the SVD representa-
tion.

5. EXPERIMENTAL EVALUATION

We have established a simple synthetic data experiment to eval-
uate the proposed Bayesian hypothesis testing framework. Three
sinusoidal source signals of unit variance and different periods are
mixed and projected into L = 10 dimensions, and white noise
added to all channels. A set of M = 8 hypotheses are evaluated
with m = 0 representing a model without dynamic components,
and m = 1� 7 representing K = 1 � 7 dynamic components.

The number of component was controlled by an initial SVD
projection from the original ten dimensional measurements to K
dimensions.

In figure 1 we show the recovery of the source signals in the
largest model K = 7 using the Molgedey-Schuster scheme.

The component autocorrelation functions were estimated from
the reconstructed source signals, forming the Toeplitz source co-
variance matrix. Note that both the determinants and the inverse
matrices can be computed in � T2 operations.

In figure 2 we show the value of a “cost function” defined as
the average negative log likelihood � log P (Xjm), estimated on
a test set, by Akaike’s information criterion (AIC) [13], and by
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Fig. 1. Decomposition of a synthetic data set comprising three spa-
tially non-orthogonal independent (periodic) components. These
component were embedded in L = 10 dimensions and degraded
by additive white noise. We show the result of projecting data onto
a seven dimensional subspace before doing the independent com-
ponent analysis, hence forcing seven independent components.
The components are found by the Molgedey-Schuster decorrela-
tion method. The components are ordered according to variance
of the reconstructed signal. The probabilistic analysis reject this
hypothesis in favor of the true hypothesis of K = 3 component,
with a relative probability of 1/1000 as seen in figure 3.
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Fig. 2. Performance indices for the experiment described in figure
1. In this case both the empirical test error (using an additional
test set for evaluation) and the AIC and BIC agree and point to
the true K = 3 model. The error is computed as the negative
log-probability.

the Bayesian Information Criterion approximation. In figure 3 we

1Note that V is quadratic as L = T .

show the BIC approximation probabilities over the set of hypothe-
ses evaluated, see equation (3). We next repeated the experiment
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Fig. 3. Probabilities for the set of hypotheses formed by increas-
ing the number of independent components from K = 0 (null-
hypothesis) to K = 7 on the data set described in figure 1. The
probability of the “null hypothesis” is P (0) < 10�10 while the
probability of the K = 7 hypothesis is P (7) � 0:001

100 times counting how often each of the methods succeeded in
picking up the correct model. Figures 4-5 summarize the results,
and show that the probabilistic approach is very efficient for pick-
ing the correct hypothesis.

6. CONCLUSION

We have formulated a probabilistic analysis of ICA that allows
the evaluation probabilities across a set of competing hypotheses.
The probabilities showed very efficient in selecting the number of
independent components in a small simulation study.
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