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Abstract

First, we propose two versions of a sliding window, block based parameter estimator for estimating the
parameters in a symmetrical stable distribution. The proposed estimator is suitable for parameter estimation
in audio signals.

Second, the suitability of the stable distribution, for modelling audio signals, is discussed. For a broad
class of audio signals, the distribution and the stationarity property are examinated. It is empirically shown
that the class of stable distributions provides a better model for audio signals, than the Gaussian distribution
model.

Third, for demonstrating the applicability of stable distributions in audio processing, a classical problem
from statistical signal processing, stochastic gradient adaptive filtering, is considered.

1 Introduction

The probability density of many physical phenomena have tails that are heavier than the tails of the Gaus-
sian density. If a physical process has heavier tails than the Gaussian density, and if the process has the
probabilistic stability property, the class of stable distributions may provide a useful model.

Stable laws have found applications in diverse fields, including physics, astronomy, biology and electrical
engineering. But despite the fact that the stable distribution is a direct generalization of the popular Gaussian
distribution, and shares a lot of its useful properties, the stable laws have been given little attention from
researchers in signal processing.

A central part of statistical signal processing, is the linear theory of stochastic processes. For second order
processes, the theory is established, and numerous algorithms are developed. Applying these algorithms on
lower order processes, results in considerably performance degradation or the algorithms may not even be
stable. Thus, there is a need for developing algorithms based on linear theory for stable processes, and these
algorithms could improve performance and robustness.

2 Modelling Audio Signals

The class of stable distributions is an appealing class for modelling phenomena of impulsive nature; and it is
to some extent analytical tractable, because of two important properties: it is a closed class of distributions,
and it satisfies the generalized central limit theorem.

Audio signals in general are not stationary, the temporal correlation is time varying, and it turns out that
the probability density function is more heavy tailed than a Gaussian density. In this work we assume
that probability density is symmetric, which is a weak restriction for audio signals. In particular we will
consider the Symmetric Alpha Stable, S�S, distribution [5]. To show the general applicability of the S�S
for modelling audio signals, we examine six audio signals, with very different characteristics.

2.1 The S�S Distribution

A univariate distribution function is S�S if the characteristic function has the form

�(t) = exp(�jtj�)



where the real parameters � and  satisfies 0 < � � 2 and  > 0. The parameter � is called the charac-
teristic exponent. The smaller �-value the more probability mass in the tails of the density function. For
� = 2 it is the Gaussian distribution, and for � = 1 it is the Cauchy distribution. The scale parameter, , is
denoted the dispersion.

For stable distributions, moments only exist for order less than the charateristic exponent. If x is a S�S
random variable, then the fractional lower order moment is

E (jxjp) = C(p; �)
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and �(�) is the usual �-function [5, 4].

2.2 Parameter Estimation for S�S Distribution

Several methods, for estimation of the parameters in stable distributions, have been proposed in the litera-
ture, see [3, 6] and references herein. In this work, the estimation is performed in the ln jS�Sj-process, as
proposed in [3]. Estimation in the ln jS�Sj-process has reasonable estimation characteristics, low compu-
tational complexity, and the estimator is on a closed form expression. For a S�S random variable x, the
estimation in the ln jS�Sj-process is given as
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is the first and second moment of z = ln jxj, and Ce = 0:57721566 : : : is the Euler
constant. The characteristics of the �-estimator is depicted in Fig.1. The estimator in Eq.1 requires many
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Figure 1 Characteristics of the �-estimator in Eq.1. Average (left) and standard deviation (right) of the �-estimate versus number of
samples in estimation.

samples to give low variance estimates, and the variance is dependent of the characteristic exponent.

2.3 Sliding Window, Block Based Parameter Estimation

In this section we propose two versions of a sliding window, block based parameter estimator, suitable for
audio signals. The basic idea of the estimator, is based on two observations: Audio signals often has strong
short term correlations, due to mechanical resonans. These short term correlations have big influence on
the short term distribution, this is particularly the case for mechanical systems with low damping combined
with heavy tailed exitation signals. And the stationarity characteristics of the audio signals, necessitate the
use of a windowed parameter estimation.

Thus, there is a need for a windowed estimator, that is robust to the influence from short terms correla-
tions. Basically the proposed estimator has two steps, that makes the estimator suitable for handling these
characteristics: A short term decorrelation, based on a linear prediction filter. And a sliding window, block
based updating of the S�S-parameters of the decorrelated signal sequences. The short term decorrelation is
performed over a block of M samples, and the updating of the S�S-parameters is performed overN blocks.



Let k denote the current block, the decorrelation is then performed over x(n)jn=(k�1)M+1;:::;kM , and the
total window length, MN samples, applies over x(n)jn=(k�N)M+1;:::;kM .

Mechanical resonans is well modelled by a simple low order AR system, thus the resonans part of the
signal can be removed by a linear predictor. The linear predictor coefficients for the kth block, ak(l),
l = 1; : : : ; L, is determined by

LX
l=1

ak(l)rx(m� l) = rx(m)

where rx(m) is the autocorrelation sequence of x(n)jn=(k�1)M+1;:::;kM . The decorrelated signal, y(n), in
the kth block, is determined as the inverse filter

y(n)jn=(k�1)M+1;:::;kM = x(n)�
LX
l=1

ak(l)x(n� l)

In order to apply the estimator in the ln jS�Sj-process, we define the signal z(n) = ln jy(n)j. A windowed
estimator of E(z) over N blocks of M samples is

�̂z(k) =
1
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where the sum is over the N blocks, i.e. m = (k �N)M + 1; : : : ; kM . The estimator of the expectation
value is updated as
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where the first sum is over m = (k � N � 1)M + 1; : : : ; (k � N)M , and the second sum is over m =
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Note that if the block sum and the quadratic block sum in Eq.3 and Eq.4 is saved for the last N blocks, then
it is only necessary to calculate the kth block sum and the kth quadratic block sum for each block update.
The windowed, block based estimators for the first and second moment of z(n), combined with the S�S
parameter estimators in Eq.1 and 2, yields1:
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The dynamic properties of estimators are of crucial importance in the case of non-stationary signals. The �-
estimator in Eq.5 is sensitive to abrupt changes in the distribution, which might be an undesirable properties
for non-stationary signals. An estimator, that is more robust against abrupt changes in distribution, is
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which is the empirical mean over N blocks of length M of the �-estimator in Eq. 1. This estimator is
biased. In Fig.2 the proposed estimators is applied on a block-wise stationary S�S signal, and it is apparent
that the estimator in Eq.7 is more robust in the case of abrupt changes in distribution.

1If the update in Eq.3 and 4 is modified to be an iterative block based update, the update equations in Eq.5 and 6 is equivalent to
the iterative update equations proposed in [3]. However, in this context, it is the sliding window property that is the important feature.
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Figure 2 Dynamic properties of the proposed �-estimators. The solid line is the estimator in Eq.5, the dashed-dot line is the estimator
in Eq.7. The signal, s, is stationary block-wise over 100000 samples; the estimator block size M = 400 and the sliding window is
over N = 50 blocks.

2.4 S�S Modelling of Audio Signal

The signals used for demonstrating the applicability of S�S modelling, are depicted in the bottom part of
the plots in Fig. 3, and some additional informations are listed in Tabel 1. In Fig.4 the empirical, the
estimated Gausssian, and the estimated S�S density, for the signal sequences, are depicted. These density
plots are obtained over the whole signal length. It is important to notice that, due to the non-stationarity
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Figure 3 Estimates of the characteristic exponent, �. Solid lines: estimator Eq.5, the linear predictor window is 10 ms and N = 50

blocks. Dotted lines: estimator Eq.7, the linear predictor window is over 100 ms, and the mean is over M = 5 blocks. For both
estimators the linear predictor filter is of order 12.

of the signals, the time window, in which the density is estimated, has deciding influence of the density
estimate. Comparing the Gaussian model, which has only one degree of freedom in modelling of the shape
of the probability density, with the S�S distribution, which has two degrees of freedom, it is reasonable to
conclude that the S�S in general provides a better model for the probability density.

It is instructive to consider the distribution of the signals in shorter time windows. The proposed sliding
window estimators in Eq.5 and Eq.7 are applied to the six signals, and the estimate of the characteristic
exponent is depicted on the same time axis as the signals in Fig 3. The solid line is the characteristic
exponent estimated with the parameter estimator in Eq.5. The linear predictor window is 10 ms, and the
estimator window is over 50 blocks. Due to the different sampling frequencies 20 kHz, 32 kHz, and 44.1
kHz, this corresponds to a window length of 200, 320 and 441 samples respectively. The dotted lines is the
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Figure 4 Probability density functions for the signals. The dots indicates the empirical density function. The dased line is the Gaussian
density corresponding to the estimated mean, �, and standard deviation, �2 . The solid line is the S�S density corresponding to the
estimated characteristic exponent, �, and dispersion, . The estimated parameter values, for each signal, is tabulated in the upper right
corner.

characteristic exponent estimated with the parameter estimator in Eq.7. The linear predictor window is over
100 ms, and the mean is over 5 blocks. For both estimators the linear predictor filter is of order 12.

The short term estimates of the characteristic exponent are in general larger than the long term estimates.
It is interesting to notice that the speech signals has relative low �-values and in certain intervals approaches
the Cauchy distribution. The background noise signals has �-values that in general are considerable larger,
but still far below the Gaussian distribution. In Fig.5 the density estimates are depicted for the signal s2(n)
and s4(n) for two different time windows, and again it is reasonable to conclude that the S�S provide a
better fit to the empirical histogram.
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Figure 5 Examples of short term density estimates for the signals s2(n) and s4(n) for different time intervals. The stair plot indicates
the empirical density function. The dased line is the Gaussian density corresponding to the estimated mean and standard deviation.
The solid line is the S�S density corresponding to the estimated characteristic exponent, �, and dispersion, . The block size is 320
and 200 samples respectively which corresponds to 10ms. The estimator in Eq.5 is applied over 50 and 100 blocks respectively, and
no linear prediction filter has been used.

It is well-known from the theory of stable distributions, that moments only exists for moments of order
less than �. The preceeding examinations, that indicates that the S�S is suitable for modelling audio
signals, and that the characteristic exponent varies between a Cauchy and a Gaussian distribution, exposes
the idea to use the estimates of the characteristic exponent in variable fractional lover order moment adaptive



Signal Describtion

s1(n) Speech signal, male, low background noise. Sampling freq. 32 kHz., 8 sec.
s2(n) Speech signal, male, low background noise. Sampling freq. 32 kHz., 10 sec.
s3(n) Cocktail party background noise. Sampling freq. 44.1 kHz., 20 sec.
s4(n) Background noise recorded in a kitchen. Sampling freq. 20 kHz., 20 sec.
s5(n) Background noise recorded in an office. Sampling freq. 44.1 kHz., 20 sec.
s6(n) Music, classical guitar. Sampling freq. 44.1 kHz., 20 sec.

Table 1 Additional information for the audio signals.

algorithms. This idea is the issue of the following section.

3 Adaptive Filtering

An illustrative application for adaptive filtering, is the acoustical echo canceller. The objective is to cancel
out the loudspeaker signal from the microphone signal, see Fig.6. An adaptive filter is applied to estimate
the acoustical channel from the loudspeaker to the microphone. The echo cancelled signal is obtained by
subtracting the remote signal, filtered by the estimated acoustical channel, from the microphone signal.
From an algorithmic point of view the local speaker is a noise signal, and the applied adaptiv algortihm
must exhibit adequate robustnes against this noise signal.
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Figure 6 Left: Acoustical echo canceller setup. Right: Impulse response for the acoustical channel, h, from loudspeaker to micro-
phone.

The standard algorithm for adaptive filters, is the Normalized Least Mean Square (NLMS) algorithm,
with the update

w(n+ 1) = w(n) + �
u(n)e(n)

a+ jju(n)jj22
The NLMS algorithm has severe convergence problems for signals with more probability mass in the tails,
than the Gaussian distribution. Recently filter theory for S�S signals has been developed [1], and the Least
Mean P-norm (LMP) algorithm is proposed. The LMP algorithm is significant more robust to signal with
heavy tails. In the following simulation study a normalized LMP update is applied:

w(n+ 1) = w(n) + �
u(n)e(n)p�1

a+ jju(n)jjpp

For S�S signals the p-norm must be less than the characteristic exponent, p < �. The development of
robust adaptive filters is subject to active research, see [2] and references herein.

Consider the adaptiv echo canceller setup, with the signal scenario as depicted in the upper part of Fig.7.
The local speaker is the speech signal s1, the speaker is deactivated in the time interval 1-2 sec, and added
some cocktail party background noise. The remote speaker is the signal s2, the speaker is deactivated in the
time interval 4-6 sec. and in that time interval the loadspeaker signal is a Gaussian noise signal (comfort
noise, �2 = :005). The �-estimator in Eq.5 is applied to the error signal, e(n), the block length is 640,
the estimator runs over 10 blocks, and the linear predictor filter is of order 12. Three different adaptive
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Figure 7 Simulation result for acoustical echo canceller scenario.

filters is applied, the standard NLMS, the NLMP with a fixed norm (p = 1:1), and the NLMP with a norm
that is adjusted in accordance with the �-estimate (p = �̂ � :2). The stepsize parameter � = :001 for
NLMS, and � = :002 for NLMP. The performance of the algortihms is evaluated as the modelling error
10 � log10 E

�
(w � h)T (w � h)=(hTh)

	
, and is depicted in the bottom part of Fig.7.

The p = 1:1 for the fixed norm NLMP was empirical found to be the best norm for the applied signals,
and the NLMP algorithm with fixed norm in general performed very good. The modelling error for NLMP
algorithm with variable norm, is between the modelling error of the two others algorithms. The variable
norm algorithm follows the best of the two other algorithms, and it is thus concluded that the variable norm
algortihm has overall better performance. However, the result is far from convincing, and the conclusion
might not hold in general, because of the dependence of the �-estimator.

The variable norm NLMP algorithm is computational much more expensive than using a fixed norm
algorithm, because of the running �-estimator. The small gain in performance do probably not justify the
additional computational expenses. Despite this fact, the simulation study shows, that the choice of norm
has deciding influence of the performance of the algorithms.

4 Conclusion

The proposed sliding window, block based parameter estimators has been applied to a broad class of audio
signals. Comparing the histogram of the audio signals with the estimated parameters of a S�S distribution,
it is concluded that the class of S�S distributions is suitable for modelling audio signals.

The simulation study shows that lower norms algorithms exhibit better robustness characteristic for audio
signals, and that the choice of norm has deciding influence of the performance of the algorithm.

Stable distributions provides a framework for synthesis of robust algortihms for a broad class of sig-
nals. The linear theory of stable distributions and processes, and the development of robust algorithms for
impulsive signals is an open research area.
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