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ABSTRACT

The result from �eld-tests using a Stepped-Frequency Ground Penetrating Radar (SF-GPR) and promising antenna
and air-ground deembedding methods for a SF-GPR is presented. A monostatic S-band rectangular waveguide
antenna was used in the �eld-tests. The advantages of the SF-GPR, e.g., amplitude and phase information in the
SF-GPR signal, is used to deembed the characteristics of the antenna. We propose a new air-to-ground interface
deembedding technique based on Principal Component Analysis which enables enhancement of the SF-GPR signal
from buried objects, e.g., anti-personal landmines. The methods are successfully evaluated on �eld-test data obtained
from measurements on a large-scale in-door test �eld.

Keywords: Anti-personal mine detection, stepped-frequency GPR, antenna deembedding, air-to-ground interface
deembedding, principal component analysis

1. INTRODUCTION

Landmines, especially anti-personal landmines (APL) pose a signi�cant problem of global proportions. A previously
estimated number of buried landmines world-wide, was as many as 80 { 110 millions. The problem is especially a
growing threat both to the military forces and to the lives, limbs, and economic welfare of civilians in the war-torn and
the developing countries. International consensus has been established to reduce the world-wide landmine problem,
by banning the use of landmines and neutralize mine �elds. However, the detection problem has becomes extremely
hard since mines have been reduced in size, and furthermore, due to the fact that most modern APL's are based
mainly on non-metallic substances.

Our objective is to identify small mine-shaped metallic and non-metallic objects buried in the ground using a
GPR. The most widely used GPRs are: the pulse radar, the Frequency-Modulated-Continuous-Wave (FW-CW)
radar, and the Stepped-Frequency (SF) radar. Our research and experiments are based on the SF-GPR approach.
The used antenna of the SF-GPR was an open-ended wave guide operating in the S-band.7{9 The SF-GPR approach
is chosen due to its advantages of measuring both the amplitude and phase information of the SF-GPR signal, and
the advantages regarding pulse modulation.

So far, promising results have been obtained using a GPR. However, detecting small non-metallic mines is still of
major concern. GPR signals from mines of plastic is in general very small, due to the fact that plastic have similar
electromagnetic properties as ordinary types of soil. In order to enhance detection of non-metallic mines, unwanted
GPR signal components needs to be reduced. This cover e.g., the antenna characteristics and the air-to-ground
impulse response.
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In Section 3 a new approach for deembedding of the antenna characteristic is presented. The antenna deembedding
approach deploy the advantages of SF-GPR. Section 4 presents a promising Principal Component Analysis (PCA)
approach to deembed the air-to-ground impulse response.

2. THE FREQUENCY STEPPED RADAR AND MEASUREMENTS

The presented deembedding methods in this paper is evaluated on �eld-test data. The �eld test data were collected
at large-scale indoor test facilities at FOA. Figure 1 shows an outline of the indoor measurement system shown. The
measurement system consists of linear bearings where the antenna is mounted. The antenna can be moved in the x
and y-directions down to steps of 10mm. The position of the antenna is controlled by the PC via the step-motors
and linear bearings. The antenna is connected via a 10m long coaxial cable to a HP8753C network analyzer that is
set up to measure the amplitude and phase of the re
ection coe�cient.

Figure 1. Outline of the indoor measurement facilities. The position of the antenna is controlled in x and y-direction
by the PC via the step motors. The open end of the antenna is 17:5 cm above ground.

Figure 2 shows the coordinates in x; y; z given for each measurement setup. The mines considered is this study
was a non-metallic M56 landmine �lled with beeswax, and a M56 shaped dummy mines of iron. All the objects have
the same irregular shape with a diameter of 5:4 cm and a height of 4:0 cm.

-
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(0; 0)

(50; 50)

Object M56 dummy Iron

x-position (cm) 25 25

y-position (cm) 25 25

z-position, depth from surface (cm) 5 5

Figure 2. The mines considered is this study is a non-metallic M56 dummay landmine �lled with beeswax, and
a M56 shaped mine of iron. The black marks indicate a landmine. The corner-coordinates indicate the number of
measurement points. The step-size is equal 1:0 cm in both directions, thus the �eld of view are 50 by 50 cm.
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For all setup the antenna were stepped 1:0 cm in both x and y-directions. The open end of the waveguide
antenna is elevated 17:5 cm above the ground and operates mainly in the far-�eld. The soil was sand with a relative
permittivity �r � 3 which is very close to that of the M56 dummy plastic mine. The network analyzer was setup to
measure amplitude and phase of the re
ection coe�cient for 291 frequencies in range of 2:5� 3:95GHz (frequency
step 5MHz.)

3. ANTENNA DEEMBEDDING

The received SF-GPR time-signal waveform can be described as the convolution of a number of time functions each
representing the impulse response of the radar systems' components corrupted by noise from various sources. Hence,
the received SF-GPR time-signal waveform r(t) can be expressed as1

r(t) = s(t)�a1(t)�c(t)�g1(t)�o(t)�g2(t)�a2(t) + n(t) (1)

where

� s(t) is the signal applied to the antenna,

� c(t) is the antenna cross coupling response,

� ai(t) are the antenna impulse response in forward and backward directions�, and

� gi(t) are ground impulse responses in forward and backward directions,

� o(t) is the object impulse response.

The objective of the antenna deembedding is to deembed the characteristics of the antenna expressed by a(t) in
(1). The antenna deembedded signal may be expressed1 as:

r0(t) = s(t)�c(t)�g(t)�o(t)�g(t) + n0(t) (2)

De�ne R(!) as the spectrum of r(t) where ! is the angular frequency. Further de�ne A12(!) as the spectrum of
a1(t) � a2(t). Then the spectrum of the deembedded signal, R0(!), can be written as R0(!) = R(!)A�1

12 (!).

If the SF-GPR system is calibrated at the antenna connector input, the advantages of the SF-GPR makes it
possible to perform antenna deembeeding using the amplitude and phase of the re
ection coe�cient at a number of
frequency bins. The antenna responses given by a1(t) and a2(t) can be measured or simulated. The deployed S-band
rectangular waveguide antenna7{9 obey A12(!) � exp(�j2�(!)) where �(!) is equal to the electrical length of the
antenna. The electric length is measured by short circuiting the open end of the antenna. The approximation of
A12(!) also accounts for the dispersion of the antenna.

In Figure 3 the result of the antenna deembedding is shown for a one 1-dimensional SF-GPR scan in a location
without mines. The left plot show the received time-signal waveform before antenna deembedding (r(t)) and the
right plot show the received time-signal waveform after antenna deembedding (r0(t)). Both signals are generated
from the measured SF-GPR spectrum by the following steps: 1) the spectrum is weighted by a Kaiser window6 of
length 291 with parameter 2� to suppress edge e�ects. 2) Next, the spectrum is padded with zeros to obtain a
sampling frequency of fs = 10:23Ghz. 3) Finally, the inverse Fast Fourier Transform is applied to obtain the time
signals. The dashed lines correspond to the ground surface. In the right plot the ground surface re
ection is noticed
at 1:2 nsec, which correspond to the distance from antenna to the ground, i.e., 17:5 cm.

�In our case the antenna is monostatic, i.e., a1(t) = a2(t).
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Figure 3. Left : Received time-signal before antenna deembedding (r(t)). Right : Received time-signal after antenna
deembedding (r0(t)). The dashed lines correspond to the ground surface. The ground surface re
ection is located at
1:2 nsec, corresponding to the distance from antenna to the ground, i.e., 17:5 cm. Further, notice that the deembedded
signal has a much more narrow response which enhances the resolution of SF-GPR time signal.

4. AIR-TO-GROUND DEEMBEDDING

Let sij(t) denote the signal received at location x = (i�1) cm, y = (j�1) cm, where i = 1; 2; � � � ; I and j = 1; 2; � � � ; J .
Traditional air-to-ground deembedding1 consists in subtracting the mean scan across the xy-plane, i.e.,

�sij(t) = sij(t)�
1

IJ

IX
i=1

JX
j=1

sij(t) (3)

This procedure removes the common signal across the xy-plane which is mainly believed to originate from the very
strong air-to-ground re
ection. However, this approach is often insu�cient to enhance the signature from mine-like
objects due to variation in the ground surface and inhomogeneities in the soil. A novel approach based on Principal
Component Analysis (PCA) and the closely related Singular Value Decomposition (SVD) is suggested. PCA is
very well-suited for high-dimensional, highly correlated data. PCA analysis has previously been applied to GPR
data analysis in10 for detection of mines on preprocessed data using cross track-depth scans (xz-plane images). The
approach taken here is di�erent and inspired by explorative analysis of functional neuroimages.2,5

De�ne the P �N signal matrix

S = fSp;tg; Sp;t = �si;j(t); p = i+ (j � 1) � I; i 2 [1; I ]; j 2 [1; J ] (4)

where the pixel index p 2 [1;P ], P = I � J , and the time index t 2 [1;N ] with N being the total number of time
samples. Column t of the matrix then represent the xy-plane scan image at time t, reshaped into a vector. The
signal matrix thus represents the sequence of xy-plane images along the time or z-direction. Usually P � N , in our
case P = 512 = 2601 and N = 40.

Since the rank of S is at most N , the SVD of S reads

S = UDV > =

NX
i=1

uiDi;iv
>
i ; Sp;t =

NX
i=1

Up;iDi;iVt;i (5)

where the P � N matrix U = fUp;ig = [u1;u2; � � � ;uN ] and the N � N matrix V = fVt;ig = [v1;v2; � � � ;vN ]

represent the orthonormal basis vectorsy, i.e., eigenvectors of the symmetric matrices SS> and S>S, respectively.

yThat is, U>
U = I and V >

V = I, where I is the identity matrix.

4



D = fDi;ig is a N �N diagonal matrix of singular values ranked in decreasing order, as shown by Di�1;i�1 � Di;i,
8 i 2 [2;N ]. The SVD identi�es a a set of uncorrelated time sequences, the Principal Components (PC's): yi = Di;ivi,
enumerated by the component index i = 1; 2; : : : ; N and yi = [yi(1); � � � ; yi(N)]>. That is, we can write the observed
signal matrix (image sequence) as a weighted sum of �xed eigenvectors (eigenimages) ui that often lend themselves to
direct interpretation. The i'th PC constitutes the normalized linear combination of pixel components with maximum
variance under the constraint that it is orthogonal to other PC's, i.e., y>i yk = 0, 8 k 6= i. The variance of y>i is D2

i;i.

Consider the projection onto the subspace spanned by the �rst M PC's, i.e.,

Y = eU>
S; eU = [u1;u2; � � � ;uM ] (6)

where Y is an M �N matrix. This provides explanation of

� = 100% �

MX
i=1

D2
i;i �

 
NX
i=1

D2
i;i

!�1

(7)

of the total variance in S. That is, S can be reconstructed optimally (in mean square error sense) from the subspace
via bS = eUY (8)

4.1. Mean Value Deembedding

The traditional deembedding by subtracting the mean scan across the xy-plane according to (3) is shown in Figures 4
and 5, for the metal and M56 dummy mine recordings described in Figure 2. I; J = 51 corresponds to an area of
50 � 50 cm, and N = 40 to a depth of maximum 3:91 ns. The �gures show power of the signals estimated using a
length 3 non-causal Kaiser window6 with parameter 2�. All images in a time sequence are scaled individually using
64 gray-values. This is motivated by the fact that detection of unknown mines would proceed from thresholding the
top 5% values, say. It is noticed that images up to time approximately t = 17 are dominated by the air-to-ground
re
ection. In the later images the metal mine is noticed, however, using the above mentioned threshold technique
result in numerous false alarms. In the mean subtracted case, the air-to-ground disturbance is reduced, however,
still clutter will produce false alarms. As expected, plastic mines are much harder to detect than metal mines, since
the re
ections are very small.

4.2. PCA based Deembedding

SVD is deployed on the signal matrix S as described above. Using an explanation coe�cient � = 99:9% (see (7))
provides a relatively small number of principal components (PC's) and associated eigenimages. Each eigenimage
summarizes the re
ections associated with the time signature given by the corresponding PC time signal. Figures
6 and 7 display the power of the PC signalsz and associated eigenimages. If the PC time signal is rather peaked,
then the eigenimage corresponds to the re
ection from the depth related to the peak location. Furthermore, the
variance of the PC's decrease with the PC number, indicating the strength of the re
ections from various depths.
Figures 8 and 9 show comparison between the previous mentioned mean subtraction method and the PCA based
reconstruction of the signal matrix. PCA reconstruction is done using (8) from a set of selected PC's. The PC's
corresponding to the air-to-ground re
ections are omitted when performing the reconstruction. For the metal mine
PC1 is omitted, whereas PC1 and PC2 are omitted in the M56 dummy mine case.

zThe power is, as earlier, calculated using a non-causal Kaiser window of size 3 with and characteristic parameter 2�.
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Figure 4. Metal mine: The 
at images depicts the power of the original received signals in the xy-plane for various
time steps t. Left panel show the original signals whereas the right panel show the mean subtracted signals. All
images in a time sequence are scaled individually for optimal use of the available 64 gray-values. Images up to
time approximately t = 17 are dominated by the air-to-ground re
ection. In the later images the metal mine is
noticed. Using the mean subtracted image clearly reduce clutter and number of false alarms. The mesh plots further
demonstrate the reduction of clutter in the mean subtracted case.
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Original Mean subtracted
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Figure 5. M56 dummy mine: The comments made about the metal mine case also applies for the plastic dummy
mine. However, clearly the signal from the plastic mine is less pronounced causing clutter to be even more annoying.
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Figure 6. Metal mine: The left panel shows the eigenimages (in xy-plane) and the right panel the associated
principal components (PC's). PC1 shows a peak close to the air-to-ground interface, and the associated eigenimage
provides the 
uctuation in the almost planar ground. PC2 peak much later and the associated eigenimage clearly has
strong mine signature. Subsequent PC's become less focused in time and the eigenimages show a clutter like texture.
Also notice that the power of the PC's decrease with the number, indicating that the air-to-ground re
ection has
the strongest power, the mine signal has smaller power, and clutter has lowest power.
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Figure 7. M56 dummy mine: The left panel shows the eigenimages (in xy-plane) and the right panel the associated
principal components (PC's). PC1 shows as in the metal mine case a peak close to the air-to-ground interface and
the associated eigenimage provides the 
uctuation in the almost planar ground. In this case, the ground 
uctuation
is more pronounced, as seen both in the eigenimage and in the PC1 signature which is clearly more peaked. PC2
is rather broad thus the eigenimage shows both ground and mine signatures. PC3 is more peaked around the
time corresponding to the mine z-location. In addition, the eigenimage shows a stronger mine like signature. The
remaining components are more mixed clutter/mine signals, however, also they have much less power.
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Mean subtracted PCA based reconstruction
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Figure 8. Metal mine: Left panel shows the result of the mean subtraction method and is identical to that of Figure
4. The right panel shows the result of the PCA based reconstruction of the signal matrix. Clearly, the air-to-ground
disturbance is removed and the clutter signi�cantly reduced. The images at t = 31 shows the strongest signature,
and clearly represent the metal mine. The physical location of the mine corresponds approximately to t = 18. The
seemingly dislocated mine signature at t = 31 is partly related to multiple re
ections and partly to the fact that the
radar cross-section is larger from oblique angles.
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Mean subtracted PCA based reconstruction
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Figure 9. M56 dummy mine: Left panel shows the result of the mean subtraction method and is identical to that of
Figure 5. The right panel shows the result of the PCA based reconstruction of the signal matrix. Like in the metal
mine case, the air-to-ground disturbance is removed and the clutter signi�cantly reduced. The PCA based images
at t = 23 shows the strongest signature, and clearly represent the mine and is very close to the physical location of
the mine at approximately t = 18. The image at t = 23 using the mean subtraction method has much more clutter,
which is further elucidated by the mesh plots.
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5. SUMMARY

This paper presents novel approaches to antenna and air-to-ground deembedding in connection with SF-GPR. The
antenna deembedding is based on antenna response deconvolution. The antenna response is determined using waveg-
uide �eld theory and measurements of characteristic parameters. Successful antenna deembedding is important reso-
lution enhancement and for subsequent mine detection methods. Air-to-ground deembedding is based on SVD/PCA
analysis of the assembly of SF-GPR signals within a certain xy-area. The PCA based method is able to display
similarities and di�erences among the signals within the area, thus the air-to-ground interface re
ection is mainly
present in a few principal components. Omitting these components in the subsequent reconstruction of the signals
enables promising air-to-ground suppression and clutter reduction. Future studies will involve automatic selection of
principal components to be retrained, as well as related techniques, e.g., ndependent components analysis3 (ICA).
The belief is that ICA would produce even more peaked components, providing better separation between the air-
to-ground re
ection, re
ections from mines, and from clutter. In addition, we plan to use the PCA based features
as input to nonlinear statistical supervised detection algorithms.
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